詳細介紹
低溫廢水生物脫氮工藝處理
氮素在水體中的過度積累造成了水體富營養化現象,嚴重危害生態系統安全。一般采用生物法進行廢水脫氮。硝化反硝化工藝是應用普遍的生物脫氮工藝。近十幾年,出現了一些新的脫氮工藝。厭氧氨氧化工藝是其中有代表性的突破之一。
該方法是利用自養型細菌將氨直接氧化為氮氣而實現脫氮的工藝,與傳統的硝化反硝化工藝相比具有耗氧量低、運行費用少和不需要外加碳源等優點,是目前已知工藝中經濟的生物脫氮途徑之一。
生物反應對環境條件敏感,容易受溫度變化影響。絕大多數微生物正常生長溫度為20~35℃,低溫會影響微生物細胞內酶的活性,在一定溫度范圍內,溫度每降低10℃,微生物活性將降低1倍,從而降低了對污水的處理效果。
工藝投入運行后,由于四季的交替和所處的地理位置影響,若不加以人工調控,溫度很難保持適宜。而溫度調控則會耗費大量的能源。解決這一難題的佳途徑就是開發高效穩定的低溫生物處理工藝。
近年來國內外已有一些研究涉及低溫廢水生物脫氮技術,提出了一些新方法。筆者將探討低溫對脫氮工藝的影響,比較低溫脫氮工藝的運行策略,并據此指出低溫脫氮工藝的研發方向。
低溫對脫氮工藝的影響
溫度是影響細菌生長和代謝的重要環境條件。絕大多數微生物正常生長溫度為20~35℃。
溫度主要是通過影響微生物細胞內某些酶的活性而影響微生物的生長和代謝速率,進而影響污泥產率、污染物的去除效率和速率;溫度還會影響污染物降解途徑、中間產物的形成以及各種物質在溶液中的溶解度,以及有可能影響到產氣量和成分等。
低溫減弱了微生物體內細胞質的流動性,進而影響了物質傳輸等代謝過程,并且普遍認為低溫將會導致活性污泥的吸附性能和沉降性能下降,以及使微生物群落發生變化。低溫對微生物活性的抑制,不同于高溫帶來的毀滅性影響,其抑制作用通常是可恢復的。