溫馨提示

該企業已關閉在線交流功能

天码av无码一区二区三区四区,久久无码人妻精品一区二区三区 ,国产乱妇无码大黄aa片,玩弄japan白嫩少妇hd小说

產品|二手機|公司|采購|資訊

東莞市一體化工業污水處理設備

參考價面議
具體成交價以合同協議為準
  • 公司名稱濰坊日麗環保設備有限公司
  • 品       牌
  • 型       號WSZ-AO
  • 所  在  地濰坊市
  • 廠商性質生產廠家
  • 更新時間 2018-09-21
  • 訪問次數475
詢底價 點擊查看聯系電話

聯系方式:吳曉雨 查看聯系方式

聯系我們時請說明是 機床商務網 上看到的信息,謝謝!


濰坊日麗環保設備有限公司是一家集技術研發、產品生產、設計施工于一體的高科技企業。公司位于世界風箏之都——鳶都濰坊,東臨海濱名城青島市,南毗新興港口日照,區位*,交通便捷,基礎設備齊全。幾年來,承蒙廣大用戶厚愛,獲得了長足的發展,現是中國環保產業協會會員單位,常年與清華大學環境研究院及其它國內專業院所合作,擁有較強的非標設計、制造和服務能力,生產檢測設備完善、品種規格齊全、產品質量穩定可靠。我公司作為資深的環保設備生產企業,產品廣泛應用于醫療、農業、石油、化工、造紙、制藥、食品、淀粉、冶金、電力、煤炭、屠宰等領域的工業污水和生活市政污水。現有地埋式一體化污水處理、中水回用、氣浮、給排水攔污輸送、污泥脫水、排泥除沙、攪拌混合、沉淀過濾、曝氣生物填料及配件、環保制漿等類一百多種規格的產品,深受用戶信賴,成為國內環保產業近年來的*。我公司擁有環保設備的設計生產資質,可為用戶提供技術咨詢、工藝設計、場區平面布置、設備安裝和調試等完善的服務。

面對競爭激烈的市場環境,我公司秉承“品質 信譽 創新 服務”的經營理念,不斷加強新產品的開發與創新,使產品有了更廣闊的市場,現產品全國,并出口到日本、荷蘭、尼日利亞、肯尼亞、阿富汗及東南亞等十多個國家和地區。企業被授予“中國山東明星企業”、“省*企業”、“國家科委環保項目重點技術推廣依托單位”、“質量、服務、信譽AAA企業”等殊榮,并通過了ISO9000質量管理體系認zheng;“日麗”品牌被評為“中國品牌”。

展望未來,我們將繼續本著“保護環境,造福人類”的宗旨,堅守“誠實守信,先做人后做事”的原則,奉行“思而后行、持續創新、共謀良心品質、以達顧客滿意”的質量方針。愿與中外朋友真誠合作,共謀環境保護的崇高事業。

日麗環保 竭誠服務”,日麗人永遠的追求。日麗全體員工熱誠歡迎中外朋友光臨指導、洽談業務!

地埋式一體化污水處理設備,壓濾機,無閥過濾器,厭氧罐、氣浮機、刮吸泥機
一體化污水處理設備是將一沉池、I、II級接觸氧化池、二沉池、污泥池集中一體的設備,并在I、II級接觸氧化池中進行鼓風曝氣,使接觸氧化法和活性污泥法有效的結合起來,同時具備兩者的優點,并克服兩者的缺點,使污水處理水平進一步提高。東莞市一體化工業污水處理設備
東莞市一體化工業污水處理設備 產品信息

東莞市一體化工業污水處理設備

01水解(酸化)的概念

水解在化學上指的是化合物與水進行的一類反應的總稱。比如,酯類物質水解生成醇和有機酸的反應。在廢水生物處理中,水解指的是有機物(基質)進入細胞前,在胞外進行的生物化學反應。這一階段為典型的特征是生物反應的場所發生在細胞外,微生物通過釋放胞外自由酶或連接在細胞外壁上的固定酶來完成生物催化氧化反應(主要包括大分子物質的斷鏈和水溶)。研究表明,自然界的許多物質(如蛋白質、糖類、脂肪等)能在好氧、缺氧或厭氧條件下順利進行水解。

酸化則是一類典型的發酵過程。這一階段的基本持征是微生物的代謝產物主要為各種有機酸(如乙酸、丙酸、下酸等)。水解菌實際上是一種具有水解能力的發酵細菌,水解是耗能過程,發酵細菌付出能量進行水解的目的,是為了取得能進行發酵的水镕性基質,并通過胞內的生化反應取得能源,同時排除代謝產物(厭氧條件下主要為各種有機酸)。實際工程中希望將產酸過程控制在小范圍。因為酸化使pH值下降太多時,不利于水解的進行。

02水解(酸化)與厭氧消化的區別

從原理上講,水解(酸化)是厭氧消化過程的*、二兩個階段但水解(酸化)工藝和厭氧消化追求的目標不同,因此是截然不同的處理方法。水解(酸化)系統中的的目的主要是將原水中的非溶解態有機物轉變為溶解態有機物,特別是工業廢水處理,主要是將其中難生物降解物質轉變為易生物降解物質,提高廢水的可生化性,以利于后續的好氧生物處理。考慮到后續好氧處理的能耗問題,水解(酸化)主要用于低濃度難降解廢水的預處理。在混合厭氧消化系統中,水解酸化是和整個消化過程有機地結臺在一起,共處于一個反應器中,水解、酸化的目的是為混合厭氧消化過程中的甲烷化階段提供基質。而兩相厭氧消化中的產酸段(產酸相)是將混合厭氧消化中的產酸段和產甲烷段分開,以便形成各自的環境,同時,產酸相對所產生的酸的形態也有要求(主要為乙酸)。此外,廢水中如含有高濃度的硝咳鹽、亞硝酸鹽、liu酸盆、亞liu酸鹽時,這些物質及其轉化產物不僅對甲烷苗有毒,而且影響沼氣的質量,也在產酸相中予以去除。

因此,盡管水解(酸化)一好氧處理工藝中的水解(酸化)段、兩相法厭氧發酵工藝中的產酸相和混合厭氧消化工藝中的產酸過程均產生有機酸,但由于三者的處理目的不同,各自的運行環境和條件存在著明顯的差異,主要表現在以下幾個方面:

(1)Eh不同

在混合厭氧消化系統中,由于完成水解、酸化的微生物和產甲烷微生物共處于同一反應器中,整個反應器的氧化還原電位Eh的控制必須首先滿足對Eh要求嚴格的甲烷菌,一般為一300mV以下,因此。系統中的水解(酸化)微生物也是在這一電位值下工作的。而兩相厭氧消化系統中,產酸相的氧化還原電位一般控制在一100mV一一300mV之間。據研究,水解(酸化)一好氧處理工藝中的水解(酸化)段為——典型的兼性過程,只要置Eh控制在+50mv以下,該過程即可順利進行。

(2)pH值不同

在混合厭氧消化系統中,消化液的pH值控制在甲烷菌生氏的pH范圍,一般為6.8—7.2。而在兩相厭氧消化系統中,產酸相的pH值一般控制在6.o一6.5之間,pH降低時,盡管產酸的速率增大,但形成的有機酸形態將發生變化,丙酸的相對含量增大,而丙酸對后續的甲烷相中的產甲烷菌會產生強烈的抑制作用。對于水解(酸化)一好氧處理系統來說,由于后續處理為好氧氧化,不存在丙酸的抑制問題,因此,控制的pH范圍也較寬,從而可獲得較高的水解(酸化)速率,一般pH維持在5.5—6.5之間。

(3)溫度不同

三種工藝對溫度的控制也不同,通常混合厭氧消化系統以及兩相厭氧消化系統的溫度均嚴格控制,要么中溫消化(30一35oC),要么高溫消化(50一55oC)。而水解(酸化)一好氧處理工藝中的水解(酸化)段對工作溫度無特殊要求,通常在常溫下運行,也可獲得較為滿意的水解(酸化)效果。

03影響水解(酸化)過程的主要因素

(1)基質的種類和形態

基質的種類和形態對水解(酸化)過程的速率有著重要影響。就多糖、蛋白質和脂肪三類物質來說,在相同的操作條件下,水解速率依次減小。同類有機物,分子量越大,水解越困難,相應池水解速率就越小。比如,就糖類物質來說,二聚糖比三聚糖容易水解;低聚糖比高聚糖容易水解。就分子結構來說,直鏈比支鏈易于水解;支鏈比環狀易于水解;單環化合物比雜環或多環化合物易于水解。

(2)水解液的pH值

水解液的pH值主要影響水解的速率、水解(酸化)的產物以及污泥的形態和結構。大量研究結果表明,水解(酸化)微生物對pH值變化的適應性較強,水解過程可在pH值寬達3.5—10.0的范圍內順利進行,但pH值為5.5—6.5。pH朝酸性方向或堿性方向移動時,水解速率都將減小。水解液pH值同時還影響水解產物的種類和含量。

(3)水力停留時間

水力停留時間是水解反應器運行控制的重要參數之一。它對反應器的影響,隨著反應器的功能不同而不同。對于單純以水解為目的的反應器,水力停留時間越長,被水解物質與水解微生物接觸時間也就越長,相應地水解效率也就越高。一般為3-4小時。

(4)溫度

水解反應是一典型的生物反向,因此.溫度變化對水解反應的影響符合一般的生物反應規律,即在一定的范圍內,溫度越高,水解反應的速率越大。但研究表明,當溫度在10一20 oC之間變化時,水解反應速率變化不大,由此說明,水解微生物對低溫變化的適應較強。

(5)粒徑

粒徑是影響顆粒狀有機物水解(酸化)速率的重要因素之—粒徑越大,單位重量有機物的比表面積越小.水解速率也就越小。由于顆粒態有機物的粒徑對水解速宰相效率影響較大,因此,一些研究者建議,對含顆粒態有機物濃度較高的廢水或污泥,在進入水解反應器前可利用泵或研磨機破碎,以減小污染物的粒徑,從而加快水解反應的進行。

04水解酸化池的作用

(1)可以用作反硝化脫氮。

(2)可以提高生化性能,提高后續好氧生化效果。

(3)目前的生活污水中化學合成材料(表面活性劑等)越來越多,水解酸化有利于此種物質的降解。

01水解(酸化)的概念

水解在化學上指的是化合物與水進行的一類反應的總稱。比如,酯類物質水解生成醇和有機酸的反應。在廢水生物處理中,水解指的是有機物(基質)進入細胞前,在胞外進行的生物化學反應。這一階段為典型的特征是生物反應的場所發生在細胞外,微生物通過釋放胞外自由酶或連接在細胞外壁上的固定酶來完成生物催化氧化反應(主要包括大分子物質的斷鏈和水溶)。研究表明,自然界的許多物質(如蛋白質、糖類、脂肪等)能在好氧、缺氧或厭氧條件下順利進行水解。

酸化則是一類典型的發酵過程。這一階段的基本持征是微生物的代謝產物主要為各種有機酸(如乙酸、丙酸、下酸等)。水解菌實際上是一種具有水解能力的發酵細菌,水解是耗能過程,發酵細菌付出能量進行水解的目的,是為了取得能進行發酵的水镕性基質,并通過胞內的生化反應取得能源,同時排除代謝產物(厭氧條件下主要為各種有機酸)。實際工程中希望將產酸過程控制在小范圍。因為酸化使pH值下降太多時,不利于水解的進行。

02水解(酸化)與厭氧消化的區別

從原理上講,水解(酸化)是厭氧消化過程的*、二兩個階段但水解(酸化)工藝和厭氧消化追求的目標不同,因此是截然不同的處理方法。水解(酸化)系統中的的目的主要是將原水中的非溶解態有機物轉變為溶解態有機物,特別是工業廢水處理,主要是將其中難生物降解物質轉變為易生物降解物質,提高廢水的可生化性,以利于后續的好氧生物處理。考慮到后續好氧處理的能耗問題,水解(酸化)主要用于低濃度難降解廢水的預處理。在混合厭氧消化系統中,水解酸化是和整個消化過程有機地結臺在一起,共處于一個反應器中,水解、酸化的目的是為混合厭氧消化過程中的甲烷化階段提供基質。而兩相厭氧消化中的產酸段(產酸相)是將混合厭氧消化中的產酸段和產甲烷段分開,以便形成各自的環境,同時,產酸相對所產生的酸的形態也有要求(主要為乙酸)。此外,廢水中如含有高濃度的硝咳鹽、亞硝酸鹽、liu酸盆、亞liu酸鹽時,這些物質及其轉化產物不僅對甲烷苗有毒,而且影響沼氣的質量,也在產酸相中予以去除。

因此,盡管水解(酸化)一好氧處理工藝中的水解(酸化)段、兩相法厭氧發酵工藝中的產酸相和混合厭氧消化工藝中的產酸過程均產生有機酸,但由于三者的處理目的不同,各自的運行環境和條件存在著明顯的差異,主要表現在以下幾個方面:

(1)Eh不同

在混合厭氧消化系統中,由于完成水解、酸化的微生物和產甲烷微生物共處于同一反應器中,整個反應器的氧化還原電位Eh的控制必須首先滿足對Eh要求嚴格的甲烷菌,一般為一300mV以下,因此。系統中的水解(酸化)微生物也是在這一電位值下工作的。而兩相厭氧消化系統中,產酸相的氧化還原電位一般控制在一100mV一一300mV之間。據研究,水解(酸化)一好氧處理工藝中的水解(酸化)段為——典型的兼性過程,只要置Eh控制在+50mv以下,該過程即可順利進行。

(2)pH值不同

在混合厭氧消化系統中,消化液的pH值控制在甲烷菌生氏的pH范圍,一般為6.8—7.2。而在兩相厭氧消化系統中,產酸相的pH值一般控制在6.o一6.5之間,pH降低時,盡管產酸的速率增大,但形成的有機酸形態將發生變化,丙酸的相對含量增大,而丙酸對后續的甲烷相中的產甲烷菌會產生強烈的抑制作用。對于水解(酸化)一好氧處理系統來說,由于后續處理為好氧氧化,不存在丙酸的抑制問題,因此,控制的pH范圍也較寬,從而可獲得較高的水解(酸化)速率,一般pH維持在5.5—6.5之間。

(3)溫度不同

三種工藝對溫度的控制也不同,通常混合厭氧消化系統以及兩相厭氧消化系統的溫度均嚴格控制,要么中溫消化(30一35oC),要么高溫消化(50一55oC)。而水解(酸化)一好氧處理工藝中的水解(酸化)段對工作溫度無特殊要求,通常在常溫下運行,也可獲得較為滿意的水解(酸化)效果。

03影響水解(酸化)過程的主要因素

(1)基質的種類和形態

基質的種類和形態對水解(酸化)過程的速率有著重要影響。就多糖、蛋白質和脂肪三類物質來說,在相同的操作條件下,水解速率依次減小。同類有機物,分子量越大,水解越困難,相應池水解速率就越小。比如,就糖類物質來說,二聚糖比三聚糖容易水解;低聚糖比高聚糖容易水解。就分子結構來說,直鏈比支鏈易于水解;支鏈比環狀易于水解;單環化合物比雜環或多環化合物易于水解。

(2)水解液的pH值

水解液的pH值主要影響水解的速率、水解(酸化)的產物以及污泥的形態和結構。大量研究結果表明,水解(酸化)微生物對pH值變化的適應性較強,水解過程可在pH值寬達3.5—10.0的范圍內順利進行,pH值為5.5—6.5。pH朝酸性方向或堿性方向移動時,水解速率都將減小。水解液pH值同時還影響水解產物的種類和含量。

(3)水力停留時間

水力停留時間是水解反應器運行控制的重要參數之一。它對反應器的影響,隨著反應器的功能不同而不同。對于單純以水解為目的的反應器,水力停留時間越長,被水解物質與水解微生物接觸時間也就越長,相應地水解效率也就越高。一般為3-4小時。

(4)溫度

水解反應是一典型的生物反向,因此.溫度變化對水解反應的影響符合一般的生物反應規律,即在一定的范圍內,溫度越高,水解反應的速率越大。但研究表明,當溫度在10一20 oC之間變化時,水解反應速率變化不大,由此說明,水解微生物對低溫變化的適應較強。

(5)粒徑

粒徑是影響顆粒狀有機物水解(酸化)速率的重要因素之—粒徑越大,單位重量有機物的比表面積越小.水解速率也就越小。由于顆粒態有機物的粒徑對水解速宰相效率影響較大,因此,一些研究者建議,對含顆粒態有機物濃度較高的廢水或污泥,在進入水解反應器前可利用泵或研磨機破碎,以減小污染物的粒徑,從而加快水解反應的進行。

04水解酸化池的作用

(1)可以用作反硝化脫氮。

(2)可以提高生化性能,提高后續好氧生化效果。

(3)目前的生活污水中化學合成材料(表面活性劑等)越來越多,水解酸化有利于此種物質的降解。01水解(酸化)的概念

水解在化學上指的是化合物與水進行的一類反應的總稱。比如,酯類物質水解生成醇和有機酸的反應。在廢水生物處理中,水解指的是有機物(基質)進入細胞前,在胞外進行的生物化學反應。這一階段為典型的特征是生物反應的場所發生在細胞外,微生物通過釋放胞外自由酶或連接在細胞外壁上的固定酶來完成生物催化氧化反應(主要包括大分子物質的斷鏈和水溶)。研究表明,自然界的許多物質(如蛋白質、糖類、脂肪等)能在好氧、缺氧或厭氧條件下順利進行水解。

酸化則是一類典型的發酵過程。這一階段的基本持征是微生物的代謝產物主要為各種有機酸(如乙酸、丙酸、下酸等)。水解菌實際上是一種具有水解能力的發酵細菌,水解是耗能過程,發酵細菌付出能量進行水解的目的,是為了取得能進行發酵的水镕性基質,并通過胞內的生化反應取得能源,同時排除代謝產物(厭氧條件下主要為各種有機酸)。實際工程中希望將產酸過程控制在小范圍。因為酸化使pH值下降太多時,不利于水解的進行。

02水解(酸化)與厭氧消化的區別

從原理上講,水解(酸化)是厭氧消化過程的*、二兩個階段但水解(酸化)工藝和厭氧消化追求的目標不同,因此是截然不同的處理方法。水解(酸化)系統中的的目的主要是將原水中的非溶解態有機物轉變為溶解態有機物,特別是工業廢水處理,主要是將其中難生物降解物質轉變為易生物降解物質,提高廢水的可生化性,以利于后續的好氧生物處理。考慮到后續好氧處理的能耗問題,水解(酸化)主要用于低濃度難降解廢水的預處理。在混合厭氧消化系統中,水解酸化是和整個消化過程有機地結臺在一起,共處于一個反應器中,水解、酸化的目的是為混合厭氧消化過程中的甲烷化階段提供基質。而兩相厭氧消化中的產酸段(產酸相)是將混合厭氧消化中的產酸段和產甲烷段分開,以便形成各自的環境,同時,產酸相對所產生的酸的形態也有要求(主要為乙酸)。此外,廢水中如含有高濃度的硝咳鹽、亞硝酸鹽、liu酸盆、亞liu酸鹽時,這些物質及其轉化產物不僅對甲烷苗有毒,而且影響沼氣的質量,也在產酸相中予以去除。

因此,盡管水解(酸化)一好氧處理工藝中的水解(酸化)段、兩相法厭氧發酵工藝中的產酸相和混合厭氧消化工藝中的產酸過程均產生有機酸,但由于三者的處理目的不同,各自的運行環境和條件存在著明顯的差異,主要表現在以下幾個方面:

(1)Eh不同

在混合厭氧消化系統中,由于完成水解、酸化的微生物和產甲烷微生物共處于同一反應器中,整個反應器的氧化還原電位Eh的控制必須首先滿足對Eh要求嚴格的甲烷菌,一般為一300mV以下,因此。系統中的水解(酸化)微生物也是在這一電位值下工作的。而兩相厭氧消化系統中,產酸相的氧化還原電位一般控制在一100mV一一300mV之間。據研究,水解(酸化)一好氧處理工藝中的水解(酸化)段為——典型的兼性過程,只要置Eh控制在+50mv以下,該過程即可順利進行。

(2)pH值不同

在混合厭氧消化系統中,消化液的pH值控制在甲烷菌生氏的pH范圍,一般為6.8—7.2。而在兩相厭氧消化系統中,產酸相的pH值一般控制在6.o一6.5之間,pH降低時,盡管產酸的速率增大,但形成的有機酸形態將發生變化,丙酸的相對含量增大,而丙酸對后續的甲烷相中的產甲烷菌會產生強烈的抑制作用。對于水解(酸化)一好氧處理系統來說,由于后續處理為好氧氧化,不存在丙酸的抑制問題,因此,控制的pH范圍也較寬,從而可獲得較高的水解(酸化)速率,一般pH維持在5.5—6.5之間。

(3)溫度不同

三種工藝對溫度的控制也不同,通常混合厭氧消化系統以及兩相厭氧消化系統的溫度均嚴格控制,要么中溫消化(30一35oC),要么高溫消化(50一55oC)。而水解(酸化)一好氧處理工藝中的水解(酸化)段對工作溫度無特殊要求,通常在常溫下運行,也可獲得較為滿意的水解(酸化)效果。

03影響水解(酸化)過程的主要因素

(1)基質的種類和形態

基質的種類和形態對水解(酸化)過程的速率有著重要影響。就多糖、蛋白質和脂肪三類物質來說,在相同的操作條件下,水解速率依次減小。同類有機物,分子量越大,水解越困難,相應池水解速率就越小。比如,就糖類物質來說,二聚糖比三聚糖容易水解;低聚糖比高聚糖容易水解。就分子結構來說,直鏈比支鏈易于水解;支鏈比環狀易于水解;單環化合物比雜環或多環化合物易于水解。

(2)水解液的pH值

水解液的pH值主要影響水解的速率、水解(酸化)的產物以及污泥的形態和結構。大量研究結果表明,水解(酸化)微生物對pH值變化的適應性較強,水解過程可在pH值寬達3.5—10.0的范圍內順利進行,但pH值為5.5—6.5。pH朝酸性方向或堿性方向移動時,水解速率都將減小。水解液pH值同時還影響水解產物的種類和含量。

(3)水力停留時間

水力停留時間是水解反應器運行控制的重要參數之一。它對反應器的影響,隨著反應器的功能不同而不同。對于單純以水解為目的的反應器,水力停留時間越長,被水解物質與水解微生物接觸時間也就越長,相應地水解效率也就越高。一般為3-4小時。

(4)溫度

水解反應是一典型的生物反向,因此.溫度變化對水解反應的影響符合一般的生物反應規律,即在一定的范圍內,溫度越高,水解反應的速率越大。但研究表明,當溫度在10一20 oC之間變化時,水解反應速率變化不大,由此說明,水解微生物對低溫變化的適應較強。

(5)粒徑

粒徑是影響顆粒狀有機物水解(酸化)速率的重要因素之—粒徑越大,單位重量有機物的比表面積越小.水解速率也就越小。由于顆粒態有機物的粒徑對水解速宰相效率影響較大,因此,一些研究者建議,對含顆粒態有機物濃度較高的廢水或污泥,在進入水解反應器前可利用泵或研磨機破碎,以減小污染物的粒徑,從而加快水解反應的進行。

04水解酸化池的作用

(1)可以用作反硝化脫氮。

(2)可以提高生化性能,提高后續好氧生化效果。

(3)目前的生活污水中化學合成材料(表面活性劑等)越來越多,水解酸化有利于此種物質的降解。

01水解(酸化)的概念

水解在化學上指的是化合物與水進行的一類反應的總稱。比如,酯類物質水解生成醇和有機酸的反應。在廢水生物處理中,水解指的是有機物(基質)進入細胞前,在胞外進行的生物化學反應。這一階段為典型的特征是生物反應的場所發生在細胞外,微生物通過釋放胞外自由酶或連接在細胞外壁上的固定酶來完成生物催化氧化反應(主要包括大分子物質的斷鏈和水溶)。研究表明,自然界的許多物質(如蛋白質、糖類、脂肪等)能在好氧、缺氧或厭氧條件下順利進行水解。

酸化則是一類典型的發酵過程。這一階段的基本持征是微生物的代謝產物主要為各種有機酸(如乙酸、丙酸、下酸等)。水解菌實際上是一種具有水解能力的發酵細菌,水解是耗能過程,發酵細菌付出能量進行水解的目的,是為了取得能進行發酵的水镕性基質,并通過胞內的生化反應取得能源,同時排除代謝產物(厭氧條件下主要為各種有機酸)。實際工程中希望將產酸過程控制在小范圍。因為酸化使pH值下降太多時,不利于水解的進行。

02水解(酸化)與厭氧消化的區別

從原理上講,水解(酸化)是厭氧消化過程的*、二兩個階段但水解(酸化)工藝和厭氧消化追求的目標不同,因此是截然不同的處理方法。水解(酸化)系統中的的目的主要是將原水中的非溶解態有機物轉變為溶解態有機物,特別是工業廢水處理,主要是將其中難生物降解物質轉變為易生物降解物質,提高廢水的可生化性,以利于后續的好氧生物處理。考慮到后續好氧處理的能耗問題,水解(酸化)主要用于低濃度難降解廢水的預處理。在混合厭氧消化系統中,水解酸化是和整個消化過程有機地結臺在一起,共處于一個反應器中,水解、酸化的目的是為混合厭氧消化過程中的甲烷化階段提供基質。而兩相厭氧消化中的產酸段(產酸相)是將混合厭氧消化中的產酸段和產甲烷段分開,以便形成各自的環境,同時,產酸相對所產生的酸的形態也有要求(主要為乙酸)。此外,廢水中如含有高濃度的硝咳鹽、亞硝酸鹽、liu酸盆、亞liu酸鹽時,這些物質及其轉化產物不僅對甲烷苗有毒,而且影響沼氣的質量,也在產酸相中予以去除。

因此,盡管水解(酸化)一好氧處理工藝中的水解(酸化)段、兩相法厭氧發酵工藝中的產酸相和混合厭氧消化工藝中的產酸過程均產生有機酸,但由于三者的處理目的不同,各自的運行環境和條件存在著明顯的差異,主要表現在以下幾個方面:

(1)Eh不同

在混合厭氧消化系統中,由于完成水解、酸化的微生物和產甲烷微生物共處于同一反應器中,整個反應器的氧化還原電位Eh的控制必須首先滿足對Eh要求嚴格的甲烷菌,一般為一300mV以下,因此。系統中的水解(酸化)微生物也是在這一電位值下工作的。而兩相厭氧消化系統中,產酸相的氧化還原電位一般控制在一100mV一一300mV之間。據研究,水解(酸化)一好氧處理工藝中的水解(酸化)段為——典型的兼性過程,只要置Eh控制在+50mv以下,該過程即可順利進行。

(2)pH值不同

在混合厭氧消化系統中,消化液的pH值控制在甲烷菌生氏的pH范圍,一般為6.8—7.2。而在兩相厭氧消化系統中,產酸相的pH值一般控制在6.o一6.5之間,pH降低時,盡管產酸的速率增大,但形成的有機酸形態將發生變化,丙酸的相對含量增大,而丙酸對后續的甲烷相中的產甲烷菌會產生強烈的抑制作用。對于水解(酸化)一好氧處理系統來說,由于后續處理為好氧氧化,不存在丙酸的抑制問題,因此,控制的pH范圍也較寬,從而可獲得較高的水解(酸化)速率,一般pH維持在5.5—6.5之間。

(3)溫度不同

三種工藝對溫度的控制也不同,通常混合厭氧消化系統以及兩相厭氧消化系統的溫度均嚴格控制,要么中溫消化(30一35oC),要么高溫消化(50一55oC)。而水解(酸化)一好氧處理工藝中的水解(酸化)段對工作溫度無特殊要求,通常在常溫下運行,也可獲得較為滿意的水解(酸化)效果。

03影響水解(酸化)過程的主要因素

(1)基質的種類和形態

基質的種類和形態對水解(酸化)過程的速率有著重要影響。就多糖、蛋白質和脂肪三類物質來說,在相同的操作條件下,水解速率依次減小。同類有機物,分子量越大,水解越困難,相應池水解速率就越小。比如,就糖類物質來說,二聚糖比三聚糖容易水解;低聚糖比高聚糖容易水解。就分子結構來說,直鏈比支鏈易于水解;支鏈比環狀易于水解;單環化合物比雜環或多環化合物易于水解。

(2)水解液的pH值

水解液的pH值主要影響水解的速率、水解(酸化)的產物以及污泥的形態和結構。大量研究結果表明,水解(酸化)微生物對pH值變化的適應性較強,水解過程可在pH值寬達3.5—10.0的范圍內順利進行,但pH值為5.5—6.5。pH朝酸性方向或堿性方向移動時,水解速率都將減小。水解液pH值同時還影響水解產物的種類和含量。

(3)水力停留時間

水力停留時間是水解反應器運行控制的重要參數之一。它對反應器的影響,隨著反應器的功能不同而不同。對于單純以水解為目的的反應器,水力停留時間越長,被水解物質與水解微生物接觸時間也就越長,相應地水解效率也就越高。一般為3-4小時。

(4)溫度

水解反應是一典型的生物反向,因此.溫度變化對水解反應的影響符合一般的生物反應規律,即在一定的范圍內,溫度越高,水解反應的速率越大。但研究表明,當溫度在10一20 oC之間變化時,水解反應速率變化不大,由此說明,水解微生物對低溫變化的適應較強。

(5)粒徑

粒徑是影響顆粒狀有機物水解(酸化)速率的重要因素之—粒徑越大,單位重量有機物的比表面積越小.水解速率也就越小。由于顆粒態有機物的粒徑對水解速宰相效率影響較大,因此,一些研究者建議,對含顆粒態有機物濃度較高的廢水或污泥,在進入水解反應器前可利用泵或研磨機破碎,以減小污染物的粒徑,從而加快水解反應的進行。

04水解酸化池的作用

(1)可以用作反硝化脫氮。

(2)可以提高生化性能,提高后續好氧生化效果。

(3)目前的生活污水中化學合成材料(表面活性劑等)越來越多,水解酸化有利于此種物質的降解。01水解(酸化)的概念

水解在化學上指的是化合物與水進行的一類反應的總稱。比如,酯類物質水解生成醇和有機酸的反應。在廢水生物處理中,水解指的是有機物(基質)進入細胞前,在胞外進行的生物化學反應。這一階段為典型的特征是生物反應的場所發生在細胞外,微生物通過釋放胞外自由酶或連接在細胞外壁上的固定酶來完成生物催化氧化反應(主要包括大分子物質的斷鏈和水溶)。研究表明,自然界的許多物質(如蛋白質、糖類、脂肪等)能在好氧、缺氧或厭氧條件下順利進行水解。

酸化則是一類典型的發酵過程。這一階段的基本持征是微生物的代謝產物主要為各種有機酸(如乙酸、丙酸、下酸等)。水解菌實際上是一種具有水解能力的發酵細菌,水解是耗能過程,發酵細菌付出能量進行水解的目的,是為了取得能進行發酵的水镕性基質,并通過胞內的生化反應取得能源,同時排除代謝產物(厭氧條件下主要為各種有機酸)。實際工程中希望將產酸過程控制在小范圍。因為酸化使pH值下降太多時,不利于水解的進行。

02水解(酸化)與厭氧消化的區別

從原理上講,水解(酸化)是厭氧消化過程的*、二兩個階段但水解(酸化)工藝和厭氧消化追求的目標不同,因此是截然不同的處理方法。水解(酸化)系統中的的目的主要是將原水中的非溶解態有機物轉變為溶解態有機物,特別是工業廢水處理,主要是將其中難生物降解物質轉變為易生物降解物質,提高廢水的可生化性,以利于后續的好氧生物處理。考慮到后續好氧處理的能耗問題,水解(酸化)主要用于低濃度難降解廢水的預處理。在混合厭氧消化系統中,水解酸化是和整個消化過程有機地結臺在一起,共處于一個反應器中,水解、酸化的目的是為混合厭氧消化過程中的甲烷化階段提供基質。而兩相厭氧消化中的產酸段(產酸相)是將混合厭氧消化中的產酸段和產甲烷段分開,以便形成各自的環境,同時,產酸相對所產生的酸的形態也有要求(主要為乙酸)。此外,廢水中如含有高濃度的硝咳鹽、亞硝酸鹽、liu酸盆、亞liu酸鹽時,這些物質及其轉化產物不僅對甲烷苗有毒,而且影響沼氣的質量,也在產酸相中予以去除。

因此,盡管水解(酸化)一好氧處理工藝中的水解(酸化)段、兩相法厭氧發酵工藝中的產酸相和混合厭氧消化工藝中的產酸過程均產生有機酸,但由于三者的處理目的不同,各自的運行環境和條件存在著明顯的差異,主要表現在以下幾個方面:

(1)Eh不同

在混合厭氧消化系統中,由于完成水解、酸化的微生物和產甲烷微生物共處于同一反應器中,整個反應器的氧化還原電位Eh的控制必須首先滿足對Eh要求嚴格的甲烷菌,一般為一300mV以下,因此。系統中的水解(酸化)微生物也是在這一電位值下工作的。而兩相厭氧消化系統中,產酸相的氧化還原電位一般控制在一100mV一一300mV之間。據研究,水解(酸化)一好氧處理工藝中的水解(酸化)段為——典型的兼性過程,只要置Eh控制在+50mv以下,該過程即可順利進行。

(2)pH值不同

在混合厭氧消化系統中,消化液的pH值控制在甲烷菌生氏的pH范圍,一般為6.8—7.2。而在兩相厭氧消化系統中,產酸相的pH值一般控制在6.o一6.5之間,pH降低時,盡管產酸的速率增大,但形成的有機酸形態將發生變化,丙酸的相對含量增大,而丙酸對后續的甲烷相中的產甲烷菌會產生強烈的抑制作用。對于水解(酸化)一好氧處理系統來說,由于后續處理為好氧氧化,不存在丙酸的抑制問題,因此,控制的pH范圍也較寬,從而可獲得較高的水解(酸化)速率,一般pH維持在5.5—6.5之間。

(3)溫度不同

三種工藝對溫度的控制也不同,通常混合厭氧消化系統以及兩相厭氧消化系統的溫度均嚴格控制,要么中溫消化(30一35oC),要么高溫消化(50一55oC)。而水解(酸化)一好氧處理工藝中的水解(酸化)段對工作溫度無特殊要求,通常在常溫下運行,也可獲得較為滿意的水解(酸化)效果。

03影響水解(酸化)過程的主要因素

(1)基質的種類和形態

基質的種類和形態對水解(酸化)過程的速率有著重要影響。就多糖、蛋白質和脂肪三類物質來說,在相同的操作條件下,水解速率依次減小。同類有機物,分子量越大,水解越困難,相應池水解速率就越小。比如,就糖類物質來說,二聚糖比三聚糖容易水解;低聚糖比高聚糖容易水解。就分子結構來說,直鏈比支鏈易于水解;支鏈比環狀易于水解;單環化合物比雜環或多環化合物易于水解。

(2)水解液的pH值

水解液的pH值主要影響水解的速率、水解(酸化)的產物以及污泥的形態和結構。大量研究結果表明,水解(酸化)微生物對pH值變化的適應性較強,水解過程可在pH值寬達3.5—10.0的范圍內順利進行,但pH值為5.5—6.5。pH朝酸性方向或堿性方向移動時,水解速率都將減小。水解液pH值同時還影響水解產物的種類和含量。

(3)水力停留時間

水力停留時間是水解反應器運行控制的重要參數之一。它對反應器的影響,隨著反應器的功能不同而不同。對于單純以水解為目的的反應器,水力停留時間越長,被水解物質與水解微生物接觸時間也就越長,相應地水解效率也就越高。一般為3-4小時。

(4)溫度

水解反應是一典型的生物反向,因此.溫度變化對水解反應的影響符合一般的生物反應規律,即在一定的范圍內,溫度越高,水解反應的速率越大。但研究表明,當溫度在10一20 oC之間變化時,水解反應速率變化不大,由此說明,水解微生物對低溫變化的適應較強。

(5)粒徑

粒徑是影響顆粒狀有機物水解(酸化)速率的重要因素之—粒徑越大,單位重量有機物的比表面積越小.水解速率也就越小。由于顆粒態有機物的粒徑對水解速宰相效率影響較大,因此,一些研究者建議,對含顆粒態有機物濃度較高的廢水或污泥,在進入水解反應器前可利用泵或研磨機破碎,以減小污染物的粒徑,從而加快水解反應的進行。東莞市一體化工業污水處理設備

04水解酸化池的作用

(1)可以用作反硝化脫氮。

(2)可以提高生化性能,提高后續好氧生化效果。

(3)目前的生活污水中化學合成材料(表面活性劑等)越來越多,水解酸化有利于此種物質的降解。

同類產品推薦

二手機推薦

對比欄

提示

×

*您想獲取產品的資料:

以上可多選,勾選其他,可自行輸入要求

個人信息:

下載機床通APP
讓生意變得更容易!機床通APP
微信公眾號
編輯部:2056841617展會部:2056841617市場部:931681025